Liangxiao Jiang's Publications


Journal Articles:

  • S. Wang, L. Jiang, and C. Li. Adapting Naive Bayes Tree for Text Classification. Knowledge and Information Systems, Online First, DOI: 10.1007/s10115-014-0746-y.
  • C. Li, L. Jiang, and H. Li. Naive Bayes for Value Difference Metric. Frontiers of Computer Science, 2014, 8(2): 255-264.
  • L. Jiang, C. Li, H. Zhang, and Z. Cai. A Novel Distance Function: Frequency Difference Metric. International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28(2): 1451002.
  • L. Jiang, Z. Cai, D. Wang, and H. Zhang. Bayesian Citation-KNN with Distance Weighting. International Journal of Machine Learning and Cybernetics, 2014, 5(2): 193-199.
  • G. Li, O. Bräysy, L. Jiang, Z. Wu, and Y. Wang. Finding Time Series Discord Based on Bit Representation Clustering. Knowledge-Based Systems, 2013, 54: 243-254.
  • L. Jiang and C. Li. An Augmented Value Difference Measure. Pattern Recognition Letters, 2013, 34(10): 1169-1174.
  • L. Jiang, Z. Cai, H. Zhang, and D. Wang. Naive Bayes Text Classifiers: A Locally Weighted Learning Approach. Journal of Experimental & Theoretical Artificial Intelligence, 2013, 25(2): 273-286.
  • L. Jiang, Z. Cai, H. Zhang, and D. Wang. Not so greedy: Randomly Selected Naive Bayes. Expert Systems with Applications, 2012, 39(12): 11022-11028.
  • L. Jiang, H. Zhang, Z. Cai, and D. Wang. Weighted Average of One-Dependence Estimators. Journal of Experimental & Theoretical Artificial Intelligence, 2012, 24(2): 219-230.
  • L. Jiang, D. Wang, and Z. Cai. Discriminatively Weighted Naive Bayes and Its Application in Text Classification. International Journal on Artificial Intelligence Tools, 2012, 21(1): 1250007.
  • L. Jiang, Z. Cai, D. Wang, and H. Zhang. Improving Tree Augmented Naive Bayes for Class Probability Estimation. Knowledge-Based Systems, 2012, 26: 239-245.
  • L. Jiang. Learning Instance Weighted Naive Bayes from Labeled and Unlabeled Data. Journal of Intelligent Information Systems, 2012, 38(1): 257-268.
  • L. Jiang and C. Li. Scaling Up the Accuracy of Decision-Tree Classifiers: A Naive-Bayes Combination. Journal of Computers, 2011, 6(7): 1325-1331.
  • L. Jiang and C. Li. An Empirical Study on Class Probability Estimates in Decision Tree Learning. Journal of Software, 2011, 6(7): 1368-1373.
  • L. Jiang. Learning Random Forests for Ranking. Frontiers of Computer Science in China, 2011, 5(1): 79-86.
  • L. Jiang. Random One-Dependence Estimators. Pattern Recognition Letters, 2011, 32(3): 532-539.
  • L. Jiang, Z. Cai, and D. Wang. Improving Naive Bayes for Classification. International Journal of Computers and Applications, 2010, 32(3): 328-332.
  • L. Jiang and C. Li. An Empirical Study on Attribute Selection Measures in Decision Tree Learning. Journal of Computational Information Systems, 2010, 6(1): 105-112.
  • L. Jiang, H. Zhang, and Z. Cai. A Novel Bayes Model: Hidden Naive Bayes. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1361-1371.
  • L. Jiang, C. Li, and Z. Cai. Learning Decision Tree for Ranking. Knowledge and Information Systems, 2009, 20(1): 123-135.
  • L. Jiang, C. Li, and Z. Cai. Decision Tree with Better Class Probability Estimation. International Journal of Pattern Recognition and Artificial Intelligence, 2009, 23(4): 745-763.
  • L. Jiang, D. Wang, Z. Cai, S. Jiang, and X. Yan. Scaling Up the Accuracy of K-Nearest-Neighbor Classifiers: A Naive-Bayes Hybrid. International Journal of Computers and Applications, 2009, 31(1): 36-43.
  • L. Jiang, Z. Cai, and D. Wang. Learning Averaged One-Dependence Estimators by Instance Weighting. Journal of Computational Information Systems (Special Issue on CCML'08), 2008, 4(6): 2753-2760.
  • L. Jiang, D. Wang, H. Zhang, Z. Cai, and B. Huang. Using Instance Cloning to Improve Naive Bayes for Ranking. International Journal of Pattern Recognition and Artificial Intelligence, 2008, 22(6): 1121-1140.
  • W. Gong, Z. Cai, and L. Jiang. Enhancing the Performance of Differential Evolution Using Orthogonal Design Method. Applied Mathematics and Computation, 2008, 206(1): 56-69.
  • L. Jiang, H. Zhang, and Z. Cai. Discriminatively Improving Naive Bayes by Evolutionary Feature Selection. Romanian Journal of Information Science and Technology, 2006, 9(3): 163-174.

Conference Papers:

  • S. Wang, L. Jiang, and C. Li. A CFS-based Feature Weighting Approach to Naive Bayes Text Classifiers. In: Proceedings of the 24th International Conference on Artificial Neural Networks (ICANN'14), 2014, Accepted.
  • L. Jiang, C. Li, Z. Cai, and H. Zhang. Sampled Bayesian Network Classifiers for Class-Imbalance and Cost-Sensitive Learning. In: Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'13), 2013, pp.512-517.
  • C. Li, L. Jiang, H. Li, and S. Wang. Attribute Weighted Value Difference Metric. In: Proceedings of the 25th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'13), 2013, pp.575-580.
  • L. Jiang, C. Li, J. Wu, and J. Zhu. A Combined Classification Algorithm Based on C4.5 and NB. In: Proceedings of the 3rd International Symposium on Intelligence Computation and Applications (ISICA'08), LNCS 5370, 2008, pp.350-359.
  • L. Jiang, H. Zhang, D. Wang, and Z. Cai. Learning Locally Weighted C4.4 for Class Probability Estimation. In: Proceedings of the 10th International Conference on Discovery Science (DS'07), LNAI 4755, 2007, pp.104-115.
  • D. Wang and L. Jiang. An Improved Attribute Selection Measure for Decision Tree Induction. In: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'07), 2007, Vol.4, pp.654-658.
  • L. Jiang, Z. Cai, D. Wang, and S. Jiang. Survey of Improving K-Nearest-Neighbor for Classification. In: Proceedings of the 4th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'07), 2007, Vol.1, pp.679-683.
  • L. Jiang, D. Wang, and Z. Cai. Scaling Up the Accuracy of Bayesian Network Classifiers by M-Estimate. In: Proceedings of the 3rd International Conference on Intelligent Computing (ICIC'07), LNAI 4682, 2007, pp.475-484.
  • Z. Cai, D. Wang, and L. Jiang. K-Distributions: A New Algorithm for Clustering Categorical Data. In: Proceedings of the 3rd International Conference on Intelligent Computing (ICIC'07), LNAI 4682, 2007, pp.436-443.
  • L. Jiang, D. Wang, Z. Cai, and X. Yan. Survey of Improving Naive Bayes for Classification. In: Proceedings of the 3rd International Conference on Advanced Data Mining and Applications (ADMA'07), LNAI 4632, 2007, pp.134-145.
  • L. Jiang, H. Zhang, and Z. Cai. Dynamic K-Nearest-Neighbor Naive Bayes with Attribute Weighted. In: Proceedings of the 3rd International Conference on Fuzzy Systems and Knowledge Discovery (FSKD'06), LNAI 4223, 2006, pp.365-368.
  • L. Jiang and H. Zhang. Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI'06), LNAI 4099, 2006, pp.970-974.
  • C. Li and L. Jiang. Using Locally Weighted Learning to Improve SMOreg for Regression. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence (PRICAI'06), LNAI 4099, 2006, pp.375-384.
  • L. Jiang and H. Zhang. Lazy Averaged One-Dependence Estimators. In: Proceedings of the 19th Canadian Conference on Artificial Intelligence (CAI'06), LNAI 4013, 2006, pp.515-525.
  • L. Jiang and H. Zhang. Learning Naive Bayes for Probability Estimation by Feature Selection. In: Proceedings of the 19th Canadian Conference on Artificial Intelligence (CAI'06), LNAI 4013, 2006, pp.503-514.
  • L. Jiang and H. Zhang. Learning Instance Greedily Cloning Naive Bayes for Ranking. In: Proceedings of the 5th IEEE International Conference on Data Mining (ICDM'05), 2005, pp.202-209.
  • H. Zhang, L. Jiang, and J. Su. Augmenting Naive Bayes for Ranking. In: Proceedings of the 22nd International Conference on Machine Learning (ICML'05), 2005, pp.1020-1027.
  • L. Jiang and Y. Guo. Learning Lazy Naive Bayesian Classifiers for Ranking. In: Proceedings of the 17th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'05), 2005, pp.412-416.
  • L. Jiang, H. Zhang, and J. Su. Learning k-Nearest Neighbor Naive Bayes for Ranking. In: Proceedings of the 1st International Conference on Advanced Data Mining and Applications (ADMA'05), LNAI 3584, 2005, pp.175-185.
  • L. Jiang, H. Zhang, Z. Cai, and J. Su. One Dependence Augmented Naive Bayes. In: Proceedings of the 1st International Conference on Advanced Data Mining and Applications (ADMA'05), LNAI 3584, 2005, pp.186-194.
  • L. Jiang, H. Zhang, and J. Su. Instance Cloning Local Naive Bayes. In: Proceedings of the 18th Canadian Conference on Artificial Intelligence (CAI'05), LNAI 3501, 2005, pp.280-291.
  • H. Zhang, L. Jiang, and J. Su. Hidden Naive Bayes. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI'05), 2005, pp.919-924.
  • L. Jiang, H. Zhang, Z. Cai, and J. Su. Learning Tree Augmented Naive Bayes for Ranking. In: Proceedings of the 10th International Conference on Database Systems for Advanced Applications (DASFAA'05), LNCS 3453, 2005, pp.688-698.
  • L. Jiang, H. Zhang, Z. Cai, and J. Su. Evolutional Naive Bayes. In: Proceedings of the 1st International Symposium on Intelligence Computation and Applications (ISICA'05), 2005, pp.344-350.

The copyrights of these papers belong to the corresponding publishers. However, for research purpose, please don’t hesitate to contact me if you want to get the copies of these papers.